Um procedimento para seleção de variáveis em modelos lineares generalizados duplos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Cavalaro, Lucas Leite
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-06082019-154531/
Resumo: Os modelos lineares generalizados duplos (MLGD), diferentemente dos modelos lineares generalizados (MLG), permitem o ajuste do parâmetro de dispersão da variável resposta em função de variáveis preditoras, aperfeiçoando a forma de modelar fenômenos. Desse modo, os mesmos são uma possível solução quando a suposição de que o parâmetro de dispersão constante não é razoável e a variável resposta tem distribuição que pertence à família exponencial. Considerando nosso interesse em seleção de variáveis nesta classe de modelos, estudamos o esquema de seleção de variáveis em dois passos proposto por Bayer e Cribari-Neto (2015) e, com base neste método, desenvolvemos um esquema para seleção de variáveis em até k passos. Para verificar a performance do nosso procedimento, realizamos estudos de simulação de Monte Carlo em MLGD. Os resultados obtidos indicam que o nosso procedimento para seleção de variáveis apresenta, em geral, performance semelhante ou superior à das demais metodologias estudadas sem necessitar de um grande custo computacional. Também avaliamos o esquema para seleção de variáveis em até \"k\" passos em um conjunto de dados reais e o comparamos com diferentes métodos de regressão. Os resultados mostraram que o nosso procedimento pode ser também uma boa alternativa quando possui-se interesse em realizar previsões.