A bayesian nonparametric approach for the two-sample problem
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/ufscar/11579 |
Resumo: | In this work, we discuss the so-called two-sample problem (PEARSON; NEYMAN, 1930) assuming a nonparametric Bayesian approach. Considering X 1 ,...,X n and Y 1 ,...,Y m two inde- pendent i.i.d samples generated from P 1 and P 2 , respectively, the two-sample problem consists in deciding if P 1 and P 2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H 0 : P 1 = P 2 based on the posterior distribution of the distance d(P 1 ,P 2 ) between P 1 and P 2 . This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared to the well known Kolmogorov-Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer’s disease diagnostic. |