Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Console, Rafael de Carvalho Ceregatti de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-06082019-170631/
|
Resumo: |
In this work, we discuss the so-called two-sample problem Pearson and Neyman (1930) assuming a nonparametric Bayesian approach. Considering X1; : : : ; Xn and Y1; : : : ; Ym two independent i.i.d samples generated from P1 and P2, respectively, the two-sample problem consists in deciding if P1 and P2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H0 : P1 = P2 based on the posterior distribution of the distance d (P1; P2) between P1 and P2. This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared with the well known Kolmogorov- Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer\'s disease diagnostic. |