Sobre uma família de equações de evolução não lineares : existência, classificação e instabilidade de soluções ondas viajantes

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Santos, Alisson Darós
Orientador(a): Arruda Saraiva de Paiva, Lynnyngs Kelly lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/10058
Resumo: This thesis is concerned with the orbital instability for a specific class of periodic traveling wave solutions with the mean zero related to the modified Camassa-Holm equation. These solutions, called snoidal waves, are written in terms of the Jacobi elliptic function sn. To prove these results we use the abstract methods of Grillakis, Shatah and Strauss, and the Floquet theory for periodic eigenvalue problems. Moreover, we classify all traveling wave solutions of the modified Camassa-Holm equation in the weak sense via parametrization of their maxima, minima and wave velocity constants, using the qualitative method of Lenells. This equation is shown to admit in addition to more popular solutions like smooth traveling waves and peakons, some not so well-known traveling waves as, for example, kinks, cuspons, composite waves and stumpons.