Bayesian inference for term structure models

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Martins, Thomas Correa e Silva
Orientador(a): Montoril, Michel Helcias lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/16576
Resumo: We explore recent advances in Bayesian methods in order to estimate the Vasicek, CIR and dynamic Nelson-Siegel (DNS) models for term structure of interest rates. The models are specified as state space time series. The main goal of this work is assessing and comparing the forecasting abilities of each model with respect to the observed data via mean absolute error. When estimated with synthetic simulated datasets, the models are able to successfully recover the latent vectors. As for the forecasting abilities, the multifactor models generally deliver the best predictions. The relevance of this work lies in integrating novel computational techniques for Bayesian inference with canonical models from the field of financial economics. Several aspects of both fields are discussed throughout the text.