Modelo de regressão para dados binários com mistura de funções de ligação

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Eugenio, Nicholas Wagner
Orientador(a): Campos, Adriano Polpo de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/9068
Resumo: A regression model for binary data with mixture of four link functions (logit, probit, complementary log log and Stukel) is shown and these functions are particular cases of the model. The frequentist estimation procedure is exposed and, by simulation studies, it is notable that, comparing with other models, the link function proposed presents a better performance in proportions’ estimations, while for predctions they are all equal. Its flexibility in being both a symmetric or an assymmetric link function is corroborated on the real data analisys results, as the simulations. Furthermore, it is shown a case where the mixture associates total weight for a link function because it is no possible to improve the results by mixing other functions.