Segmentação de cristais de clínquer em imagens microscópicas via redes neurais convolucionais

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Rodrigues, Renan Vinicius
Orientador(a): Zuanetti, Daiane Aparecida lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/21166
Resumo: Portland cement is currently carried out by trained professionals who analyze the crystals present in the microstructure of the clinker (an input produced in the cement manufacturing process and which gives it its main characteristics). Among these crystals, the one that most affects the final product is Alita (C3S). Because of this, building an automatic process for segmenting and classifying C3S in microscopic images of clinker can bring savings and efficiency in cement manufacturing. This work, therefore, seeks, through convolutional neural networks and image pre-processing filters, to carry out this segmentation so that the automation of the process is viable, increasing the quality of the product. A description of neural networks and their extensions is provided, as well as a brief review of the most common image preprocessing filters. Subsequently, several neural network models are fitted and compared in the analysis of clinker images.