Método para prognóstico do consumo de materiais em instalações prediais elétricas utilizando sistemas inteligentes

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Milion, Raphael Negri
Orientador(a): Paliari, José Carlos lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Civil - PPGECiv
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4700
Resumo: Given the importance of forecasting costs in early stages of architectural projects, when it is possible to make changes in the product design and therefore obtain changes in the production costs, and also due to the difficulty of electrical-material consumption prognosis, this research proposes models for predicting electrical-material consumption used in buildings electrical installations. It was used artificial neural networks, an inteligent system, and conventional methods, such as linear regression and consumption rates for the prognostic models. The available data were collected from projects feasibility study and draft design. The research method includes the following steps: a) creation of a database with information collected in quantitatives used for estimates, b) data analysis and preprocessing for use in inteligent and conventional systems, c) attribute selection for best feature identification, i.e, for identifying features with high ability to influence the prognosis and d) development of the models and performance analysis, comparing the predicted values with the actual values. The developed models improves the consumption prognosis performance when compared with common prognostic tools. Current tools consists in multiplying quantitatives by a comsumption rate. Also, the novel models allows more cautious decision-making in projects early design phases, allowing greater awareness of costs impacts. It is expected that this metodology could be used for predicting other building materials.