Testes bayesianos em ensaios clínicos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Silva, Josimara Tatiane da
Orientador(a): Cobre, Juliana lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/15744
Resumo: In this thesis, we propose two new Bayesian approaches for equivalence hypotheses testing for proportions and prove that these Bayesian hypotheses tests are equivalent. These Bayesian methodologies applied to equivalence tests combine frequentist and Bayesian tools from the perspective of decision theory, in which optimal decision rules are used to minimize the linear combination of the probabilities of type I and II errors, in addition to the use of a significance level as a function of sample size. Thus, these Bayesian methodologies overcome some limitations of the frequentist approach, predominantly used for equivalence testing. Moreover, we perform a Bayesian robustness study for the significance tests. We propose a sensitivity index by using the derivative of the constructed statistical functionals. The results of real data analysis show that this sensitivity index satisfactorily measures the local sensitivity of prior quantities with respect to the choice of the prior distribution. A simulation study was carried out to assess the rate of the type I error probability and the power of the tests under different scenarios. We also evaluate overdispersed count data by means of a misspecification analysis. We present a table to determine, in a practical way, the optimal sample size. The developed methodologies are illustrated for bioequivalence tests in the context of clinical trials.