Telurooxetanas: estudos cristalográficos, modelagem molecular e cálculos de docking para aplicação biológica

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Maganhi, Stella Hernandez
Orientador(a): Schpector, Júlio Zukerman lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Química - PPGQ
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/6445
Resumo: This work is composed of 4 chapters. In Chapter 1 is a description of the problems addressed here, starting with the characteristics of the protein, its biological and social importance, and the interactions responsible for both its structure and the formation of ligand-protein complexes, there is also a brief description of Te(IV) compounds followed by the presentation of the grounds of the experimental methods used, namely crystallography and docking. In Chapter 2 the objectives of this work are presented. Chapter 3 includes the experimental procedures that were used to determine the crystal and molecular structures, the modeling of the compounds that did not have crystallographic structure, as well as the molecular docking. In Chapter 4 are described and discussed the results. The crystal structures of the telluroxetanes (3E)-2-chloro-3-(chloromethylidene)-2-(4- methoxyphenyl)-1-oxa-2 λ4- telluraspiro[3.6]decane (1) and of (3E)-2-chloro-3-(chloromethylidene)-2-(4- methoxyphenyl)-1-oxa-2 λ4- telluraspiro[3.5]nonane (2) show that the coordination polyhedron around the atom of Te is a pseudo-pentagonal bipyramid. The supramolecular synthon is different in the two cases, in spite that the Te atom makes a secondary interaction with a halide, in both cases. The docking results for all tellurium compounds have shown that these ligands form complexes with Cathepsin B through the formation of a covalent bond between the Te and S of Cys29 of the enzyme. The differences in the values of scores from the docking and the number of interactions are due, mainly, the size of the carbon chain. Finally the conclusions and outlook can be found.