Diagnóstico e seleção de modelos com resposta binária e função de ligação assimétrica

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Coelho, Fabiano Rodrigues
Orientador(a): Novelli, Cibele Maria Russo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/19371
Resumo: For binary response variables, probit and logit link functions are widely used. However, when the data is imbalanced, traditional approaches may not be suitable. In this thesis, we consider the skew-probit link function as a potential alternative for models with binary response. The parameters are estimated through a Bayesian approach using Hamiltonian Monte Carlo, and residual analysis is developed. Additionally, an extension for the case of mixed models is presented, with parameter estimation performed through numerical integration. As a practical application, we analyze two datasets. In both applications, it is possible to observe, through model selection criteria, that the skew-probit regression model is more efficient than traditional approaches. Computationally, for the fixed-effects model, we use the Stan language adapted to the R software. In the mixed case, the INLA methodology is considered. Proposals for future research are also discussed.