Distribuições preditiva e implícita para ativos financeiros
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/9077 |
Resumo: | We present two different approaches to obtain a probability density function for the stock?s future price: a predictive distribution, based on a Bayesian time series model, and the implied distribution, based on Black & Scholes option pricing formula. Considering the Black & Scholes model, we derive the necessary conditions to obtain the implied distribution of the stock price on the exercise date. Based on predictive densities, we compare the market implied model (Black & Scholes) with a historical based approach (Bayesian time series model). After obtaining the density functions, it is simple to evaluate probabilities of one being bigger than the other and to make a decision of selling/buying a stock. Also, as an example, we present how to use these distributions to build an option pricing formula. |