Lebesgue solvability of equations associated to elliptic and canceling linear differential operators with measure data
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/20335 |
Resumo: | In this thesis, we present new results on the solvability of the equation A*(x,D) f = µ for f in L^p, with complex measure data µ, associated to an elliptic linear differential operator A(x,D) of order m with variable complex coefficients. Our method is based on (m,p)-energy control of µ giving sufficient conditions for solutions when 1 ≤ p < ∞. A particular study is presented in the global setting of Lebesgue solvability for the equation A*(D) f = µ, where A(D) is a homogeneous differential operator with constant coefficients. We also obtain sufficient conditions in the limiting case p = ∞ using new L^1 (global and local) estimates on measures for elliptic and canceling operators, which are interesting on their own. |