Biodegradação do pesticida pentaclorofenol por uma linhagem de fungo marinho isolado da ascídia Didemnun ligulum

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Vacondio, Bruna
Orientador(a): Seleghim, Mirna Helena Regali lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ecologia e Recursos Naturais - PPGERN
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
PCP
PCA
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/2102
Resumo: Environmental contamination by pesticides in agriculture has caused many irreparable damage environmental to the ecosystem. Pentachlorophenol (PCP), the class of organochlorines, is a phenolic compound and a dangerous pollutant, that although banned in Brazil since 1985, there are many contaminated areas. This pesticide is the subject of much concern because it has high toxicity and power of persistence in the environment due to their resistance to biotic and abiotic degradation. The use of microorganisms as degrading agents of several chemical is considered an effective method to reduce the adverse effects of contaminants on the environment. The fungi derived from marine environment are adapted to extreme conditions, developing attributes that give them the ability to produce various of biologically active compounds differentes of their respective representatives who inhabit the land environment. In addition, marine fungi present an excellent bioenzimatic potential to be explored in the biotransformation of xenobiotics such as, for example, pesticides. In this work, fifteen strains of fungi isolated from a marine invertebrate, the ascidian Didemnun ligulum were evaluated according to their resistance, ability to grow in the presence of the pentachlorophenol (PCP) pesticide and its enzymatic potential against biodegradation of the pesticide and its metabolites. Concentrations were evaluated 10, 25, 30, 40 and 50 mgL-1 in solid media 3% malt. Nine among the tested strains showed growth in at least one concentration, but the DL2B strain (identified as Trichoderma harzianum) obtained optimal growth in most (50 mgL-1), proving be resistant to its toxicity and suggesting its potential for biodegradation. Therefore, it was selected for reactions in liquid medium in the presence of the pesticide with an initial concentration of 20 mgL-1 of PCP, to measure biodegradation. he biodegradation were evaluated after 7, 14 and 21 days of incubation. In 7 days of incubation it was no longer detected the presence of PCP in the samples, indicating the biodegradation of the pesticide by the fungus. The pentachloroanisole (PCA) metabolites and 2,3,4,6- tetrachloroanisole (2,3,4,6-TeCA) were identified by gas chromatography coupled with mass spectrometry (GC-MS), indicating degradation of the pesticide by the fungus. In a second step, the strain of Trichoderma harzianum was subjected to biodegradation reactions in liquid medium containing metabolites PCA and 2,3,4,6-TeCA. It was observed that these compounds possibly cause some toxic effect on this micro-organism, but not enough to cripple the biodegradation by fungi. The fungus didn't degrade these compounds completely as occured with the PCP, but got reduce the concentrations of metabolites in the samples. These results confirm the efficiency of fungi derived from marine environment to biodegrade persistent compounds and enables the improvement methodologies using these microorganisms in techniques for decontamination of polluted environments with xenobiotics.