Existence and multiplicity of solutions for problems involving the Dirac operator

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Somavilla, Fernanda
Orientador(a): Paiva, Francisco Odair Vieira de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/11856
Resumo: In this thesis, we study equations that involving the Dirac operator and which have the form $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ where $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ with $\alpha_{j}$ and $\beta$ are complex matrices 4x4, j = 1, 2, 3 and a>0.Using variational methods and elements from critical point theory for strongly indefinite problems we obtain existence and multiplicity results of solutions $u:R^{3} \rightarrow C^{4}$ under different sets of hypothesis about the potential M and the nonlinearity F: Firstly, we consider a problem with nonperiodic potential and concave-convex type nonlinearity, nonperiodic, which contain weight functions that can present signal change. Next, using the generalized Nehari manifold, we study problems in which nonlinearity satisfies weak monotonicity conditions and may relate to the potential function. Among such problems,we consider a periodic case and, due to the assumptions, in order to obtain the multiplicity results we use the Clarke's subdifferential and Krasnoselskii genus. Finally, we approach a problem with nonlinearity asymptotically linear at infinity and matrix potential. In this case, the potential is described by a sum of a non-positive suitable matrix potential and a diagonal matrix whose elements are function in some $L^{\sigma}, \sigma >1,$ which can change signal.