Seleção de covariância para o modelo grafo gaussiano via reversible jump
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/17866 |
Resumo: | The purpose of the Graphical Gaussian model is to find the covariance structure that represents the relationship between random variables, whose joint distribution is a multivariate normal. This is a tool used to modeling Gaussian graphs. The inference of parameters of this type of modeling is commonly based on maximum likelihood estimation. However, this type of methodology requires the adjustment of all possible models to verify which model best represents the relationship between the variables. In case any model, among all the possibilities, presents an estimation problem, the result may not represent the true relationship between the variables. We propose alterations in the procedure based on the Reversible Jump algorithm of Dobra et al. (2011) for selecting and fitting the Graphical Gaussian model. We also create indicators to evaluate simulation results from a Graphical Gaussian model. The results obtained in this work are favorable to our proposal presented, in which an improvement in the model selection method was observed, reducing the error when searching for the covariance structure. |