Índice de Yang e teoremas generalizados

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Costa, Willer Daniel da Silva
Orientador(a): Ramos, Adriana lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/5879
Resumo: We work with T-spaces (X; T), where X is a Hausdor_ compact space and T : X ! X is a continuous involution without _xed points. Considering the sphere Sn with the antipodal map, we highlight three classical theorems relating to the T-space Sn;A): Borsuk-Ulam's theorem, Kakutani-Yamabe-Yujobô's theorem and Dyson's theorem. This dissertation consists of a detailed study of the article fo C. T. Yang (Annals of Math. 60, no. 2 (1954), 262-282) where the author introduces a concept of the index and presents, in a sense homological, generalizations of the three theorems cited above, considering any T-space. Beyond the generalizations itself, we build examples of the index calculation of some T-spaces and, still, we explore a concept of orthogonality in T-spaces.