Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Costa, Willer Daniel da Silva |
Orientador(a): |
Ramos, Adriana
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Carlos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufscar.br/handle/20.500.14289/5879
|
Resumo: |
We work with T-spaces (X; T), where X is a Hausdor_ compact space and T : X ! X is a continuous involution without _xed points. Considering the sphere Sn with the antipodal map, we highlight three classical theorems relating to the T-space Sn;A): Borsuk-Ulam's theorem, Kakutani-Yamabe-Yujobô's theorem and Dyson's theorem. This dissertation consists of a detailed study of the article fo C. T. Yang (Annals of Math. 60, no. 2 (1954), 262-282) where the author introduces a concept of the index and presents, in a sense homological, generalizations of the three theorems cited above, considering any T-space. Beyond the generalizations itself, we build examples of the index calculation of some T-spaces and, still, we explore a concept of orthogonality in T-spaces. |