Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Bruckschen, Mírian
 |
Orientador(a): |
Vieira, Renata
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Faculdade de Informáca
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/5146
|
Resumo: |
O gerenciamento de grandes volumes de informação é uma área de crescente interesse e pesquisa, tanto na academia quanto na indústria. Diferentes mecanismos já foram propostos com o objetivo de facilitar a criação, gerenciamento e manutenção de bases de conhecimento, e recentemente ontologias têm despontado como um forte candidato para tal função. Ontologias são o principal mecanismo para representação do conhecimento em contextos tecnológicos atuais como o da Web Semântica. Entretanto, a construção manual destas ontologias é custosa, dado o montante de informação a ser processada para a execução desta tarefa. Com esta motivação, este trabalho propõe que a confecção de ontologias, mais especificamente a sua população, pode ser automatizada pela tarefa de Reconhecimento de Entidades Nomeadas (REN). O trabalho compreende diferentes tarefas da área de Processamento de Linguagem Natural: Reconhecimento de Entidades Nomeadas, Reconhecimento de Relações e Aprendizado de Ontologias. Para a execução da tarefa de população de ontologias, foi construída manualmente uma ontologia do domínio de privacidade e posteriormente desenvolvido um método para executar a sua população através da tarefa de REN. Este método compreende a população da ontologia com instâncias e relações. Para validar este método, foi desenvolvido um sistema que o implementa. Este sistema foi testado sobre um corpus montado pela autora deste trabalho. Este corpus é composto por documentos da área de privacidade e responsabilização, e da legislação associada a este tema. São apresentados neste trabalho o método, o sistema desenvolvido, as avaliações a que este trabalho foi submetido e suas conclusões |