Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Moraes, Tatiane Coreixas
 |
Orientador(a): |
Vieira, Renata
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Faculdade de Informáca
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/5113
|
Resumo: |
Define-se correferência como a relação entre diversos componentes linguísticos com uma mesma entidade de mundo. A resolução automática de correferência textual está inserida num contexto muito importante na área de Processamento da Linguagem Natural, pois vários sistemas necessitam dessa tarefa. O nível de processamento linguístico depende do conhecimento de mundo, e isso ainda é um desafio para a área. Esse desafio estimulou e tornou-se o objeto de estudo desta dissertação. Nesse sentido, analisamos o papel das categorias de entidades nomeadas e, através de aprendizado de máquina, verificamos as condições de resolução em diferentes categorias. Os resultados dos experimentos demonstraram que o conhecimento de mundo, representado nas categorias de entidades nomeadas, auxilia nessa tarefa, pois o percentual de retorno do sistema com base nas categorias teve uma melhora de 17% em comparação com a versão sem as categorias. |