Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Barros, Rodrigo Coelho
|
Orientador(a): |
Ruiz, Duncan Dubugras Alcoba
|
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Faculdade de Informáca
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/5084
|
Resumo: |
Árvores-modelo são um caso particular de árvores de decisão aplicadas na solução de problemas de regressão, onde a variável a ser predita é contínua. Possuem a vantagem de apresentar uma saída interpretável, auxiliando o usuário do sistema a ter mais confiança na predição e proporcionando a base para o usuário ter novos insights sobre os dados, confirmando ou rejeitando hipóteses previamente formadas. Além disso, árvores-modelo apresentam um nível aceitável de desempenho preditivo quando comparadas à maioria das técnicas utilizadas na solução de problemas de regressão. Uma vez que gerar a árvore-modelo ótima é um problema NP-Completo, algoritmos tradicionais de indução de árvores-modelo fazem uso da estratégia gulosa, top-down e de divisão e conquista, que pode não convergir à solução ótima-global. Neste trabalho é proposta a utilização do paradigma de algoritmos evolutivos como uma heurística alternativa para geração de árvores-modelo. Esta nova abordagem é testada por meio de bases de dados de regressão públicas da UCI, e os resultados são comparados àqueles gerados por algoritmos gulosos tradicionais de indução de árvores-modelo. Os resultados mostram que esta nova abordagem apresenta uma boa relação custo-benefício entre desempenho preditivo e geração de modelos de fácil interpretação, proporcionando um diferencial muitas vezes crucial em diversas aplicações de mineração de dados. |