Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Gómez, Silvio Normey
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Fernandes, Paulo Henrique Lemelle
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Faculdade de Informáca
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/5226
|
Resumo: |
In the Data Mining area experiments have been carried out using Ensemble Classifiers. We experimented Random Forests to evaluate the performance when randomness is applied. The results of this experiment showed us that the impact of randomness is much more relevant in Random Forests when compared with other algorithms, e.g., Bagging and Boosting. The main purpose of this work is to decrease the effect of randomness in Random Forests. To achieve the main purpose we implemented an extension of this method named Stochastic Random Forests and specified the strategy to increase the performance and stability combining the results. At the end of this work the improvements achieved are presented |