Análise visual para monitoramento de alunos de cursos à distância

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Weiand, Augusto lattes
Orientador(a): Manssour, Isabel Harb lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Faculdade de Informática
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/7111
Resumo: With the technology advancement, distance education has been very discussed in recent years, especially with the emergence of several kinds of Virtual Learning Environments (VLE’s). These environments used in distance education courses, usually generate a lot of data due to the high number of students and the various tasks which involve their interactions. Thus, arises the need to search efficient and intelligent ways to find relevant information. Data mining techniques help in the discovery of implicit knowledge that can support decision making. However, eventually appear difficulties in understanding the obtained results of the mining due to the analyzed volume. In these cases, the use of visualization and interaction techniques assists in this task. The main goal of this work is to present the development of a visual analysis approach that uses data mining algorithms and visualization techniques to help monitoring students of distance learning courses in the institutions that use virtual learning environments. These students are classified considering their performance, providing ways to investigate and predict possible approvals, disapprovals and evasions. The visualizations aim to improve the understanding of the generated data by the mining algorithms, providing different ways of interaction. It is possible to analyze both the general behavior of students in a selected course, as their individual behaviors. Performance comparisons of a student between different courses, and from interactions performed in a set of courses are also allowed. Initial tests demonstrated that it was possible to make predictions in a satisfactory way, as well as enable visualizations and interactions to the users for interpreting the information resulting from mining algorithms.