Style transfer for text-based image manipulation

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Móre, Martin Duarte lattes
Orientador(a): Barros, Rodrigo Coelho lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/8983
Resumo: Grande parte dos dados que produzimos atualmente estão na forma de fotografias digitais, o que aumenta a demanda por aplicações de edição de imagens. Contudo, manipulação de imagens contém uma curva de aprendizado íngreme; desta forma, seria extremamente valioso automatizar ou simplificar este processo artístico para torná-lo mais acessível. Neste estudo, nós investigamos o uso de um subconjunto de linguagem natural (mais específicamente, descrições textuais de objetos) como entrada para automatizar a manipulação de imagens. Nós propomos uma abordagem baseada em aprendizado produnfo para a tarefa de manipulação de imagens baseada em texto que combina treinamento adversário e conceitos de transferência de estilo. Nós avaliamos nosso método, comparamos com abordagens referência e concluímos que nossos resultados possuem qualidade competitiva quando comparados com o estado-da-arte.