Desenvolvimento de células solares com contatos posteriores formados por radiação laser e análise da passivação na face posterior

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Coutinho, Daniel Augusto Krieger lattes
Orientador(a): Zanesco, Izete lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais
Departamento: Faculdade de Engenharia
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/3275
Resumo: This work was focused on the development of silicon solar cells with laser fired contacts and rear face passivation. Several processes were developed based on two different p-type silicon substrates. The objective was to develop a solar cell manufacturing process with laser fired contacts and aluminum deposited by evaporation, as well as to assess the rear passivation. In Si-Cz wafers, the phosphorus diffusion was performed at 865 °C. From the power and the frequency experimental optimization in Si-Cz wafers, it was found that the efficiency of 13.1 % was obtained with 15 W of power and 80 kHz of frequency. The efficiency of 14.5 % was achieved from the annealing temperature of 350 °C and belt speed of 66 cm/min. The experimental optimization of the distance between the dots and the contact area of the dots resulted on 14.1 % efficiency, for the distance between dots of 0.5 mm and the dot area contact of 7230 μm2. For the PV-Si-FZ substract, with the best diffusion temperature of 875 °C, the efficiency of 14.0 % was obtained. It was found that the efficiency for Si-Cz and Si-FZ solar cell was similar, due to the low minority charge carrier lifetime. The deposition of a TiO2 film on the rear side resulted in an increase of the fill factor and efficiency, however the increase of the silicon oxide layer reduced the efficiency of the devices