Aprendizado de máquina aplicado à pedagogia da improvisação musical

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Martins, Tiago Leandro lattes
Orientador(a): Basbaum, Sérgio Roclaw lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica de São Paulo
Programa de Pós-Graduação: Programa de Estudos Pós-Graduados em Tecnologias da Inteligência e Design Digital
Departamento: Faculdade de Ciências Exatas e Tecnologia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.pucsp.br/jspui/handle/handle/40864
Resumo: Musical improvisation has been performed by programable machines for a long time, which reinforces the question about the role technology plays in culture and how it could better assist humans in complex topics and open domains. It’s possible to verify a number of artificial intelligence-based applications, with technology and performance on the spot while literature relating AI aspects to musical improvisation pedagogy in popular music is scarse. This research explores how machine learning aspects, as features engineering, could better assist the human cognition in such complex topic as the musical improvisation, using machine learning techniques to explicit idiomatic improvisational rules found in the literature from a digital database containing transcribed recordings. Even though relationships have been found, there are a number of parameters to be considered in order to encompass all the complexity behind this subject.