Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Pasini, Mirtes Fátima
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Healy, Siobhan Victoria |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica de São Paulo
|
Programa de Pós-Graduação: |
Programa de Estudos Pós-Graduados em Educação Matemática
|
Departamento: |
Educação
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tede2.pucsp.br/handle/handle/11282
|
Resumo: |
This work is inserted the research project Argumentation and Proof in School Mathematics (AProvaME), which aims to study the teaching and learning of mathematical proofs during compulsory schooling. The main research question of this contribution to the project relates to how proof is treated in particular geometry topics in one collection of mathematics textbooks for secondary school students. More specifically, the study aims to identify how the passage from empiricism to deduction is contemplated in the textbook activities as well as to document the interventions and strategies necessary on the part of the mathematics teacher in order to manage this transition. The types of proofs in the classification of Balacheff (1988) and the functions of proof identified by de Villiers (2001) serve as the principle theoretical tools for these analyses. Following a survey of the activities related to proof and proving in topics related to the theorem of Pythagoras and properties of straight lines and triangles, teaching sequences based on these activities were developed with students from the 8th Grade of a secondary school within the public school system of the municipal of Jacupiranga in the State of São Paulo. The main findings of the study indicate that the teacher has at his or her disposal material that permit a broad approach to proof and proving, although the passage from exercises involving reliance on empirical manipulations for validation to the construction of proofs based on mathematical properties is not very explicitly addressed, with the result that intense teacher intervention is necessary at this point. A particular difficulty faced by the teacher is knowing how to intervene without assuming responsibility for the resolution of the task in question. Finally, a dynamic geometry activity is presented, as an attempt to provide a learning situation which might enable students to engage more spontaneously in the transition from evidence-based arguments to valid mathematical proofs |