Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Corbo, Olga |
Orientador(a): |
Ag Almouloud, Saddo |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica de São Paulo
|
Programa de Pós-Graduação: |
Programa de Estudos Pós-Graduados em Educação Matemática
|
Departamento: |
Educação
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tede2.pucsp.br/handle/handle/10820
|
Resumo: |
We have conducted this study to contribute to education of future teachers, by proposing the use of golden section as a context to explore the notion of incommensurable magnitudes. We have based our study on the notion of jeux de cadres , introduced by Douady (1986) in Mathematics Didactic, and used the Didactic Engineering research methodology. Our research was developed on the following hypothesis: a teaching sequence about the golden section which favors an interaction among different knowledge domains can advance the comprehension and/or development of the notion of incommensurability of straight line segments . For this study, we have attempted to determine if the process of successive divisions based on Euclids algorithm helped foster the development of the notion of incommensurability of straight line segments in the future teachers. Furthermore, we verified whether they used the jeux de cadres to solve some problems presented in the sequence and how it contributed to develop the notion of golden rectangle and the notion of incommensurable straight line segments. Finally, we determined if they have established a relationship between the golden rectangle characteristics and the notion of incommensurability of straight line segments, by offering a proof of the incommensurability of the sides of the golden rectangle. The results seem to indicate some progress in relation to the answers provided in the pre-test, which allows us to conclude that the golden section can be a favorable context for the comprehension and/or development of the notion of incommensurable straight line segments. The examination of the students performance have also shown that the sequence can promote an interaction among different knowledge domains, allowing a connection between certain geometric constructions and irrational numbers. At the end, we discuss some limitations observed during the development of this study, whose analysis can serve as a starting point for new investigations on the same theme. |