[pt] MODELO DE NEURO CO-EVOLUÇÃO COM INSPIRAÇÃO QUÂNTICA APLICADO A PROBLEMAS DE COORDENAÇÃO

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: EDUARDO DESSUPOIO MOREIRA DIAS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56041&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56041&idi=2
http://doi.org/10.17771/PUCRio.acad.56041
Resumo: [pt] Em diversos problemas encontrados na literatura, se faz necessária alguma coordenação entre os agentes para que a tarefa seja realizada de forma ótima. Entretanto, pode ser difícil a obtenção desta coordenação por conta da quantidade e características dos agentes, dinâmica do ambiente e/ou complexidade da tarefa. O objetivo principal deste estudo é propor um modelo que possa se adaptar a problemas heterogêneos de coordenação e de dimensões elevadas, com aprendizado autônomo e que tenha convergência satisfatória, o qual foi denominado Modelo de Neuro Co-Evolução com Inspiração Quântica (NCoQ). O modelo se utiliza dos paradigmas da física quântica e da co-evolução biológica, evoluindo concomitantemente sub-populações de indivíduos quânticos para obter ganhos de convergência. A representação dos indivíduos por pulsos quânticos consegue reduzir o número de indivíduos em cada população, além de ser a mais recomendada para a utilização de neuro-evolução por conta da representação real. Ressalta-se também a capacidade do modelo em obter de forma autônoma a melhor configuração de arquitetura para as redes neurais de cada agente, não exigindo do programador a escolha deste parâmetro. Foram propostos novos operadores quânticos de crossover e mutação que foram comparados na otimização de funções de diversas dimensões. Para testar o desempenho do modelo, foram desenvolvidas, em linguagem MATLAB, simulações para o problema presa predador, para o benchmark multi-rover de exploração de ambientes e uma simulação para cobertura telefônica. Foram feitas comparações com outros modelos neuro-evolutivos encontrados na literatura, tendo o modelo NCoQ apresentado os melhores resultados.