[pt] APRIMORAÇÃO DO ALGORITMO Q-NAS PARA CLASSIFICAÇÃO DE IMAGENS
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61015&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61015&idi=2 http://doi.org/10.17771/PUCRio.acad.61015 |
Resumo: | [pt] Redes neurais profundas são modelos poderosos e flexíveis que ganharam a atenção da comunidade de aprendizado de máquina na última década. Normalmente, um especialista gasta um tempo significativo projetando a arquitetura neural, com longas sessões de tentativa e erro para alcançar resultados bons e relevantes. Por causa do processo manual, há um maior interesse em abordagens de busca de arquitetura neural, que é um método que visa automatizar a busca de redes neurais. A busca de arquitetura neural(NAS) é uma subárea das técnicas de aprendizagem de máquina automatizadas (AutoML) e uma etapa essencial para automatizar os métodos de aprendizado de máquina. Esta técnica leva em consideração os aspectos do espaço de busca das arquiteturas, estratégia de busca e estratégia de estimativa de desempenho. Algoritmos evolutivos de inspiração quântica apresentam resultados promissores quanto à convergência mais rápida quando comparados a outras soluções com espaço de busca restrito e alto custo computacional. Neste trabalho, foi aprimorado o Q-NAS: um algoritmo de inspiração quântica para pesquisar redes profundas por meio da montagem de subestruturas simples. O Q-NAS também pode evoluir alguns hiperparâmetros numéricos do treinamento, o que é um primeiro passo na direção da automação completa. Foram apresentados resultados aplicando Q-NAS, evoluído, sem transferência de conhecimento, no conjunto de dados CIFAR-100 usando apenas 18 GPU/dias. Nossa contribuição envolve experimentar outros otimizadores no algoritmo e fazer um estudo aprofundado dos parâmetros do Q-NAS. Nesse trabalho, foi possível atingir uma acurácia de 76,40%. Foi apresentado também o Q-NAS aprimorado aplicado a um estudo de caso para classificação COVID-19 x Saudável em um banco de dados de tomografia computadorizada de tórax real. Em 9 GPU/dias, conseguimos atingir uma precisão de 99,44% usando menos de 1000 amostras para dados de treinamento. |