Exportação concluída — 

[en] A HEURISTIC METHOD FOR MULTIOBJECTIVE SCHEDULING PROBLEM IN VARIOUS MACHINE ENVIRONMENTS

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: MIGUEL ANGEL FERNANDEZ PEREZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19601&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19601&idi=2
http://doi.org/10.17771/PUCRio.acad.19601
Resumo: [pt] Um problema de programação ou escalonamento de produção tem como finalidade determinar uma seqüência factível de processamento de um conjunto de operações e de um conjunto de recursos ao longo de um intervalo de tempo, visando otimizar uma ou mais medidas de desempenho, geralmente associadas ao fator tempo ou ao balanceamento de uso dos recursos. Nesse problema, podem existir ainda restrições de precedência entre as operações e de disponibilidade de recursos por operação. Tais operações formam parte das tarefas ou pedidos de clientes por bens ou serviços. Problemas de escalonamento podem ser difíceis, particularmente, porque o tempo é um limitante para se buscar a melhor seqüência entre as seqüências factíveis possíveis. Porém, encontrar boas soluções para problemas complexos de otimização em um intervalo de tempo aceitável é crucial em sistemas produtivos competitivos, onde os problemas de escalonamento são comumente encontrados. A dissertação tem como foco o desenvolvimento de um novo método computacional para resolver problemas de escalonamento nos ambientes de operações: flow shop, flexible job shop, integrated resource selection and operation sequences e advanced planning and scheduling. Inspirado no método de Newton para problemas de otimização contínua multiobjetivo de Fliege et al. (2008), o método proposto é adaptado a cada ambiente de operação. Exemplos e experimentos numéricos com o método proposto são apresentados para cada ambiente de operações, assim como são realizadas comparações com algoritmos existentes.