[en] ON MACHINE LEARNING TECHNIQUES TOWARD PATH LOSS MODELING IN 5G AND BEYOND WIRELESS SYSTEMS

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: YOIZ ELEDUVITH NUNEZ RUIZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64761&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64761&idi=2
http://doi.org/10.17771/PUCRio.acad.64761
Resumo: [pt] A perda de percurso (PL) é um parâmetro essencial em modelos de propagação e crucial na determinação da área de cobertura de sistemas móveis. Osmétodos de aprendizado de máquina (ML) tornaram-se ferramentas promissoras para a previsão de propagação de rádio. No entanto, ainda existem algunsdesafios para sua implantação completa, relacionados à seleção das entradasmais significativas do modelo, à compreensão de suas contribuições para asprevisões do modelo e à avaliação adicional da capacidade de generalizaçãopara amostras desconhecidas. Esta tese tem como objetivo projetar modelosde PL baseados em ML otimizados para diferentes aplicações das tecnologias5G e além. Essas aplicações abrangem links de ondas milimétricas (mmWave)para ambientes indoor e outdoor na faixa de frequência de 26,5 a 40 GHz,cobertura de macrocélulas no espectro sub-6 GHz e comunicações veicularesusando campanhas de medições desenvolvidas em CETUC, Rio de Janeiro,Brazil. Vários algoritmos de ML são explorados, como redes neurais artificiais(ANN), regressão de vetor de suporte (SVR), floresta aleatória (RF) e aumentode árvore de gradiente (GTB). Além disso, estendemos dois modelos empíricospara mmWave com previsão de PL melhorada. Propomos uma metodologiapara seleção robusta de modelos de ML e uma metodologia para selecionar ospreditores mais adequados para as máquinas consideradas com base na melhoria de desempenho e na interpretabilidade do modelo. Além disso, para o canalveículo-veículo (V2V), uma técnica de rede neural convolucional (CNN) também é proposta usando uma abordagem de aprendizado por transferência paralidar com conjuntos de dados pequenos. Os testes de generalização propostosmostram a capacidade dos modelos de ML de aprender o padrão entre as entradas do modelo e a PL, mesmo em ambientes e cenários mais desafiadoresde amostras desconhecidas.