[en] INTEGRATED SOLUTIONS FOR THE FORMULATIONS OF THE GEOMETRIC NONLINEARITY PROBLEM

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: MARCOS ANTONIO CAMPOS RODRIGUES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=42361&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=42361&idi=2
http://doi.org/10.17771/PUCRio.acad.42361
Resumo: [pt] Uma análise não linear geométrica de estruturas, utilizando o Método dos Elementos Finitos (MEF), depende de cinco aspectos: a teoria de flexão, da descrição cinemática, das relações entre deformações e deslocamentos, da metodologia de análise não linear e das funções de interpolação de deslocamentos. Como o MEF é uma solução numérica, a discretização da estrutura fornece grande influência na resposta dessa análise. Contudo, ao se empregar funções de interpolação correspondentes à solução homogênea da equação diferencial do problema, obtêm-se o comportamento exato da estrutura para uma discretização mínima, como ocorre em uma análise linear. Assim, este trabalho visa a integrar as soluções para o problema da não linearidade geométrica, de maneira a tentar reduzir essa influência e permitir uma discretização mínima da estrutura, considerando ainda grandes deslocamentos e rotações. Então, utilizando-se a formulação Lagrangeana atualizada, os termos de ordem elevada no tensor deformação, as teorias de flexão de Euler-Bernoulli e Timoshenko, os algoritmos para solução de problemas não lineares e funções de interpolação, que consideram a influência da carga axial, obtidas da solução da equação diferencial do equilíbrio de um elemento infinitesimal na condição deformada, desenvolve-se um elemento de pórtico espacial com uma formulação completa. O elemento é implementado no Framoop e sua resposta, utilizando-se uma discretização mínima da estrutura, é comparada com formulações usuais, soluções analíticas e com o programa Mastan2 v3.5. Os resultados evidenciam a eficiência da formulação desenvolvida para prever a carga crítica de estruturas planas e espaciais utilizando uma discretização mínima.