[en] DEALING WITH DECISION POINTS IN PROCESS MINING

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: DANIEL DUQUE GUIMARAES SARAIVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37835&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37835&idi=2
http://doi.org/10.17771/PUCRio.acad.37835
Resumo: [pt] Devido ao grande aumento da competitividade e da, cada vez maior, demanda por eficiência, muitas empresas perceberam que é necessário repensar e melhorar seus processos. Para atingir este objetivo, elas têm cada vez mais buscado técnicas computacionais que sejam capazes de extrair novas informações e conhecimentos de suas grandes bases de dados. Os processos das empresas, normalmente, possuem momentos em que uma decisão deve ser tomada. É razoável esperar que casos similares tenham decisões parecidas sendo tomadas ao longo do processo. O objetivo desta dissertação é criar um minerador de decisão que seja capaz the automatizar a tomada de decisão dentro de um processo. A primeira parte do trabalho consiste na identificação dos pontos de decisão em uma rede de Petri. Em seguida, transformamos a tomada de decisão em um problema de classificação no qual cada possibilidade da decisão se torna uma classe. Para fazer a automatização, é utilizada uma árvore de decisão treinada com os atributos dos dados que estão presentes nos logs dos eventos. Um estudo de caso real é utilizado para validar que o minerador de decisão é confiável para processos reais.