[en] BRANCHING PROCESSES FOR EPIDEMICS STUDY
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64469&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64469&idi=2 http://doi.org/10.17771/PUCRio.acad.64469 |
Resumo: | [pt] Este trabalho modela a evolução temporal de uma epidemia com uma abordagem estocástica. O número de novas infecções por infectado é modelado como uma variável aleatória discreta, chamada aqui de contágio. Logo, a evolução temporal da doença é um processo estocástico. Mais especificamente, a propagação é dada pelo modelo de Bienaymé-Galton-Watson, um tipo de processo de ramificação de parâmetro discreto. Neste processo, para um determinado instante, o número de membros infectados, ou seja, a geração de membros infectados é uma variável aleatória. Na primeira parte da dissertação, dado que o modelo probabilístico do contágio é conhecido, quatro metodologias utilizadas para obter as funções de massa das gerações do processo estocástico são comparadas. As metodologias são: funções geradoras de probabilidade com e sem identidades polinomiais, cadeia de Markov e simulações de Monte Carlo. A primeira e terceira metodologias fornecem expressões analíticas relacionando a variável aleatória de contágio com a variável aleatória do tamanho de uma geração. Essas expressões analíticas são utilizadas na segunda parte desta dissertação, na qual o problema clássico de inferência paramétrica bayesiana é estudado. Com a ajuda do teorema de Bayes, parâmetros da variável aleatória de contágio são inferidos a partir de realizações do processo de ramificação. As expressões analíticas obtidas na primeira parte do trabalho são usadas para construir funções de verossimilhança apropriadas. Para resolver o problema inverso, duas maneiras diferentes de se usar dados provindos do processo de Bienaymé-Galton-Watson são desenvolvidas e comparadas: quando dados são realizações de uma única geração do processo de ramificação ou quando os dados são uma única realização do processo de ramificação observada ao longo de uma quantidade de gerações. O critério abordado neste trabalho para encerrar o processo de atualização na inferência paramétrica usa a distância de L2-Wasserstein, que é uma métrica baseada no transporte ótimo de massa. Todas as rotinas numéricas e simbólicas desenvolvidas neste trabalho são escritas em MATLAB. |