[en] A FRAMEWORK FOR AUTOMATED VISUAL INSPECTION OF UNDERWATER PIPELINES
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65960&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65960&idi=2 http://doi.org/10.17771/PUCRio.acad.65960 |
Resumo: | [pt] Em ambientes aquáticos, o uso tradicional de mergulhadores ou veiculos subaquáticos tripulados foi substituído por veículos subaquáticos não tripulados (como ROVs ou AUVs). Com vantagens em termos de redução de riscos de segurança, como exposição à pressão, temperatura ou falta de ar. Além disso, conseguem acessar áreas de extrema profundidade que até então não eram possiveis para o ser humano. Esses veiculos não tripulados são amplamente utilizados para inspeções como as necessárias para o descomissionamento de plataformas de petróleo Neste tipo de fiscalização é necessário analisar as condições do solo, da tu- bulação e, principalmente, se foi criado um ecossistema próximo à tubulação. Grande parte dos trabalhos realizados para a automação desses veículos utilizam diferentes tipos de sensores e GPS para realizar a percepção do ambiente. Devido à complexidade do ambiente de navegação, diferentes algoritmos de controle e automação têm sido testados nesta área, O interesse deste trabalho é fazer com que o autômato tome decisões através da análise de eventos visuais. Este método de pesquisa traz a vantagem de redução de custos para o projeto, visto que as câmeras possuem um preço inferior em relação aos sensores ou dispositivos GPS. A tarefa de inspeção autônoma tem vários desafios: detectar os eventos, processar as imagens e tomar a decisão de alterar a rota em tempo real. É uma tarefa altamente complexa e precisa de vários algoritmos trabalhando juntos para ter um bom desempenho. A inteligência artificial apresenta diversos algoritmos para automatizar, como os baseados em aprendizagem por reforço entre outros na área de detecção e classificação de imagens Esta tese de doutorado consiste em um estudo para criação de um sistema avançado de inspeção autônoma. Este sistema é capaz de realizar inspeções apenas analisando imagens da câmera AUV, usando aprendizagem de reforço profundo profundo para otimizar o planejamento do ponto de vista e técnicas de detecção de novidades. Contudo, este quadro pode ser adaptado a muitas outras tarefas de inspecção. Neste estudo foram utilizados ambientes realistas complexos, nos quais o agente tem o desafio de chegar da melhor forma possível ao objeto de interesse para que possa classificar o objeto. Vale ressaltar, entretanto, que os ambientes de simulação utilizados neste contexto apresentam certo grau de simplicidade carecendo de recursos como correntes marítimas on dinâmica de colisão em seus cenários simulados Ao final deste projeto, o Visual Inspection of Pipelines (VIP) framework foi desenvolvido e testado, apresentando excelentes resultados e ilustrando a viabilidade de redução do tempo de inspeção através da otimização do planejamento do ponto de vista. Esse tipo de abordagem, além de agregar conhecimento ao robô autônomo, faz com que as inspeções subaquáticas exijam pouca presença de ser humano (human-in-the-loop), justificando o uso das técnicas empregadas. |