[pt] REPRESENTAÇÃO ESTOCÁSTICA PARA SOLUÇÕES DO PROBLEMA DE DIRICHLET PARA EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍPTICAS
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27261&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27261&idi=2 http://doi.org/10.17771/PUCRio.acad.27261 |
Resumo: | [pt] Como motivação, apresentaremos alguns problemas que ilustram a conexão entre a teoria da probabilidade e algumas equações diferenciais parciais. Suas soluções mesclam os dois assuntos e provocam a suspeita de que alguns processos estocásticos e operadores diferenciais caminham juntos. Em seguida, exibiremos a teoria das difusões de Itô. Mostraremos algumas de suas características, como a propriedade de Markov e cada um destes processos possuirá o que chamaremos de gerador infinitesimal da difusão. Este será um operador diferencial de segunda ordem cujo estudo detalhado revela características do processo. Apresentaremos também a fórmula de Dynkin. Com essas ferramentas probabilísticas, encontraremos uma representação estocástica para a solução do problema de Dirichlet para operadores diferenciais elípticos, generalizando as soluções dos problemas inicialmente propostos. |