[pt] REPRESENTAÇÃO ESTOCÁSTICA PARA SOLUÇÕES DO PROBLEMA DE DIRICHLET PARA EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍPTICAS

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: CLAUSON CARVALHO DA SILVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27261&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27261&idi=2
http://doi.org/10.17771/PUCRio.acad.27261
Resumo: [pt] Como motivação, apresentaremos alguns problemas que ilustram a conexão entre a teoria da probabilidade e algumas equações diferenciais parciais. Suas soluções mesclam os dois assuntos e provocam a suspeita de que alguns processos estocásticos e operadores diferenciais caminham juntos. Em seguida, exibiremos a teoria das difusões de Itô. Mostraremos algumas de suas características, como a propriedade de Markov e cada um destes processos possuirá o que chamaremos de gerador infinitesimal da difusão. Este será um operador diferencial de segunda ordem cujo estudo detalhado revela características do processo. Apresentaremos também a fórmula de Dynkin. Com essas ferramentas probabilísticas, encontraremos uma representação estocástica para a solução do problema de Dirichlet para operadores diferenciais elípticos, generalizando as soluções dos problemas inicialmente propostos.