[en] VERIFICATION OF THE (DELTA)KEFF HYPOTHESIS AS THE DRIVING FORCE FOR FATIGUE CRACK GROWTH

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: JULIAN ANDRES ORTIZ GONZALEZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56498&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56498&idi=2
http://doi.org/10.17771/PUCRio.acad.56498
Resumo: [pt] Medindo a rigidez de corpos de prova em testes de propagação de trinca por fadiga, Elber identificou que a ponta da trinca só está totalmente aberta durante uma parte do ciclo de carregamento, e nomeou o carregamento onde a trinca abre totalmente de carga de abertura Pab. Baseado nisso, Elber assumiu que o dano à frente da trinca era induzido apenas pela fração do carregamento acima da Pab, propondo que a força motriz na propagação de trincas por fadiga é a gama do fator de intensidade de tensões efetivo (delta)Kef. Para verificar esta hipótese, neste trabalho foram examinados diferentes cenários em testes de propagação de trinca por fadiga. Primeiramente, em corpos DC(T) de aço AISI 1020 e em corpos DC(T) e C(T) de alumínio 6351-T6 foi propagada uma trinca com (delta)K e Kmax quase constantes, medindo Pab em campo próximo e em campo distante, com extensômetros e com um sistema 3D de correlação digital de imagens (DIC). Depois, usando novos corpos DC(T) de aço e de alumínio, foi propagada uma trinca com (delta)K e Kmax quase constantes, antes e depois de um evento de sobrecarga, medindo a Pab ao longo do teste, em campo próximo e campo distante. Cabe salientar que nesses testes as espessuras dos corpos de prova foram projetadas para que a trinca propagasse em tensão plana e em deformação plana. Finalmente, em testes de propagação de trinca com (delta)K e Kmax quase constantes, em corpos DC(T) de aço e de alumínio foi medido o campo de deformação à frente da ponta da trinca com um sistema de microscópio estéreo DIC, para analisar o comportamento dentro da zona plástica, medindo também a Pab com os métodos mencionados anteriormente. Dos resultados dos testes três comportamentos foram particularmente relevantes. Nos primeiros testes de propagação com deltaK e Kmax quase constantes, a razão Kab/Kmax diminuía enquanto a trinca propagava com uma taxa constante. Nos testes de sobrecarga o valor mínimo de (delta)Kef estava defasado em relação ao valor mínimo de taxa de propagação (da/dN). Já nos testes onde foi medido o campo deformação com o sistema de microscópio estéreo DIC, a deformação 0.1mm à frente da ponta da trinca mostrou que existia dano para cargas abaixo da Pab. Portanto, estes resultados não podem ser explicados pela hipótese de Elber, e contestam o (delta)Kef como a força motriz na propagação de trincas por fadiga.