[pt] FILTROS DE DERIVAÇÃO INVARIANTES

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: ROMULO BRITO DA SILVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=22234&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=22234&idi=2
http://doi.org/10.17771/PUCRio.acad.22234
Resumo: [pt] Os dados adquiridos nos experimentos físicos e nas imagens geométricas ou médicas são tipicamente discretas. Esses dados são interpretados como amostras de uma função desconhecida, porém cujas derivadas servem para caracterizar o dado. Por exemplo, o movimento de um fluido é descrito por um campo de velocidades, uma curva é caracterizada pela evolução da sua curvatura, as imagens médicas são geralmente segmentadas por estimativas de gradiente, entre outros. É possível obter derivadas coerentes a partir de filtragem dos dados. Porém, em dados multi-dimensionais, os filtros usuais privilegiam direções alinhadas com os eixos, o que pode gerar problemas quando essas derivadas são interpretadas geometricamente. Por exemplo, a curvatura estimada dependeria da orientação da curva, perdendo o sentido geométrico da curvatura. O objetivo do presente trabalho é melhorar a invariância geométrica dos filtros de derivadas.