[pt] MODELAGEM EM EXPERIMENTOS FATORIAIS REPLICADOS PARA MELHORIA DE PROCESSOS INDUSTRIAIS TÊXTEIS
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24390&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24390&idi=2 http://doi.org/10.17771/PUCRio.acad.24390 |
Resumo: | [pt] Esta dissertação descreve a aplicação de Modelos Lineares Generalizados (MLGs) à análise de um experimento visando identificar a combinação dos níveis das variáveis independentes: concentração de hidróxido de sódio (A), volume de hipoclorito de sódio (B) e sua interação (AB), que minimiza a variável resposta: proporção de itens com defeitos, em um processo de beneficiamento numa indústria têxtil de pequeno porte. A variável resposta encontra-se na forma de proporção, violando os pressupostos básicos do Modelo Linear Clássico e com isso as estimativas dos coeficientes pelo método de Mínimos Quadrados Ordinários (MQO) é menos confiável. O planejamento utilizado foi o fatorial completo 22 com ponto central e replicado. Após o planejamento, a modelagem pelo MLG é aplicada, só então é possível identificar uma subdispersão dos dados, verificar que o modelo empregado está correto e que o volume de hipoclorito de sódio (B) é o único fator significativo, no processo de alvejamento industrial da empresa. Portanto, como a finalidade é minimizar a resposta, utiliza-se o nível inferior (-1) desta variável. Consequentemente, como o intuito é reduzir os custos com insumos químicos pode-se utilizar o nível mínimo da concentração de hidróxido de sódio (A) e o nível máximo da interação entre os fatores (AB), já que eles não são significativos ao modelo. |