[pt] ALOCAÇÃO DE RECURSOS ONLINE DA PERSPECTIVA DE ANUNCIANTES

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: EDUARDO CESAR NOGUEIRA COUTINHO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49083&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49083&idi=2
http://doi.org/10.17771/PUCRio.acad.49083
Resumo: [pt] Nesse trabalho, propomos o problema AdInvest, que modela o processo decisiório de alocação de investimento em marketing digital do ponto de vista do anunciante. Para o problema proposto, definimos um algoritmo chamado balGreedy, e provamos suas garantias para instâncias determísticas e estocásticas do AdInvest. Os teoremas provados garantem ao nosso algoritmo resultados de pior caso relativamente próximos ao OPT, em diversos tipos de instâncias levantadas ao decorrer do trabalho. Em especial, focamos nas instâncias que modelam o efeito de saturação das audiências, que se faz presente na dinâmica de anúncios online. Como mostrado nos experimentos computacionais, o algoritmo balGreedy se mostrou consistentemente eficiente em comparação com as políticas alternativas adotadas, tanto nas instâncias que foram geradas por simulação, quanto em instâncias reais obtidas a partir de dados de um anunciante do Facebook Ads.