[pt] EXTRAÇÃO DE REGRAS FUZZY PARA MÁQUINAS DE VETOR SUPORTE (SVM) PARA CLASSIFICAÇÃO EM MÚLTIPLAS CLASSES

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: ADRIANA DA COSTA FERREIRA CHAVES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9191&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9191&idi=2
http://doi.org/10.17771/PUCRio.acad.9191
Resumo: [pt] Este trabalho apresenta a proposta de um novo método para a extração de regras fuzzy de máquinas de vetor suporte (SVMs) treinadas para problemas de classificação. SVMs são sistemas de aprendizado baseados na teoria estatística do aprendizado e apresentam boa habilidade de generalização em conjuntos de dados reais. Estes sistemas obtiveram sucesso em vários tipos de problemas. Entretanto, as SVMs, da mesma forma que redes neurais (RN), geram um modelo caixa preta, isto é, um modelo que não explica o processo pelo qual sua saída é obtida. Alguns métodos propostos para reduzir ou eliminar essa limitação já foram desenvolvidos para o caso de classificação binária, embora sejam restritos à extração de regras simbólicas, isto é, contêm funções ou intervalos nos antecedentes das regras. No entanto, a interpretabilidade de regras simbólicas ainda é reduzida. Deste modo, propõe-se, neste trabalho, uma técnica para a extração de regras fuzzy de SVMs treinadas, com o objetivo de aumentar a interpretabilidade do conhecimento gerado. Além disso, o modelo proposto foi desenvolvido para classificação em múltiplas classes, o que ainda não havia sido abordado até agora. As regras fuzzy obtidas são do tipo se x1 pertence ao conjunto fuzzy C1, x2 pertence ao conjunto fuzzy C2,..., xn pertence ao conjunto fuzzy Cn, então o ponto x = (x1,...,xn) é da classe A. Para testar o modelo foram realizados estudos de caso detalhados com quatro bancos de dados: Íris, Wine, Bupa Liver Disorders e Winconsin Breast Cancer. A cobertura das regras resultantes da aplicação desse modelo nos testes realizados mostrou-se muito boa, atingindo 100% no caso da Íris. Após a geração das regras, foi feita uma avaliação das mesmas, usando dois critérios, a abrangência e a acurácia fuzzy. Além dos testes acima mencionados foi comparado o desempenho dos métodos de classificação em múltiplas classes usados no trabalho.