[en] HYBRID SYSTEM FOR RULE EXTRACTION APPLIED TO DIAGNOSIS OF POWER TRANSFORMERS
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=20756&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=20756&idi=2 http://doi.org/10.17771/PUCRio.acad.20756 |
Resumo: | [pt] Este trabalho tem como objetivo construir um classificador baseado em regras de inferência fuzzy, as quais são extraídas a partir de máquinas de vetor suporte (SVMs) e ajustadas com o auxílio de um algoritmo genético. O classificador construído visa a diagnosticar transformadores de potência. As SVMs são sistemas de aprendizado baseados na teoria do aprendizado estatístico e apresentam boa habilidade de generalização em conjuntos de dados reais. SVMs, da mesma forma que redes neurais (RN), geram um modelo caixa preta, isto é, um modelo que não explica o processo pelo qual sua saída é obtida. Entretanto, para alguns problemas, o conhecimento sobre como a classificação foi obtida é tão importante quanto a classificação propriamente dita. Alguns métodos propostos para reduzir ou eliminar essa limitação já foram desenvolvidos, embora sejam restritos à extração de regras simbólicas, isto é, contêm funções ou intervalos nos antecedentes das regras. No entanto, a interpretabilidade de regras simbólicas ainda é reduzida. De forma a aumentar a interpretabilidade das regras, o modelo FREx_SVM foi desenvolvido. Neste modelo as regras fuzzy são extraídas a partir de SVMs treinadas. O modelo FREx_SVM pode ser aplicado a problemas de classificação com n classes, não sendo restrito a classificações binárias. Entretanto, apesar do bom desempenho do modelo FREx_SVM na extração de regras linguísticas, o desempenho de classificação do sistema de inferência fuzzy obtido é ainda inferior ao da SVM, uma vez que as partições (conjuntos fuzzy) das variáveis de entrada são definidas a priori, permanecendo fixas durante o processo de aprendizado das regras. O objetivo desta dissertação é, portanto, estender o modelo FREx_SVM, de forma a permitir o ajuste automático das funções de pertinência das variáveis de entrada através de algoritmos genéticos. Para avaliar o desempenho do modelo estendido, foram realizados estudos de caso em dois bancos de dados: Iris, como uma base benchmark, e a análise de resposta em frequência. A análise de resposta em frequência é uma técnica não invasiva e não destrutiva, pois preserva as características dos equipamentos. No entanto, o diagnóstico é feito de modo visual comparativo e requer o auxílio de um especialista. Muitas vezes, este diagnóstico é subjetivo e inconclusivo. O ajuste automático das funções de pertinência correspondentes aos conjuntos fuzzy associados às variáveis de entrada reduziu o erro de classificação em até 13,38 por cento em relação à configuração sem este ajuste. Em alguns casos, o desempenho da configuração com ajuste das funções de pertinência supera até mesmo aquele obtido pela própria SVM. |