[en] SYNTHESIS OF ELECTRONIC CIRCUITS FOR EVOLUTIONARY COMPUTING

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: RICARDO SALEM ZEBULUM
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7566&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7566&idi=2
http://doi.org/10.17771/PUCRio.acad.7566
Resumo: [pt] Esta tese investiga a utilização de computação evolutiva aplicada à síntese de circuitos eletrônicos. A computação evolutiva compreende uma classe de algoritmos que utilizam certos aspectos da evolução natural como metáforas. Particularmente, a seleção natural, a recombinação de material genético e a mutação são os mecanismos biológicos nos quais a maior parte destes algoritmos evolutivos buscam inspiração. Embora algoritmos evolutivos tenham encontrado em problemas de otimização o seu maior potencial de aplicação, a utilização dos mesmos na síntese de circuitos eletrônicos vem sendo intensamente investigada nos últimos anos, dando início à área de pesquisa denominada de Eletrônica Evolutiva. Esta tese enfoca a área de eletrônica evolutiva sob o ponto de vista de engenharia de circuitos, e seu maior objetivo é oferecer embasamento teórico e experimental para proposta de novas ferramentas de Computer Aided Design (CAD) de circuitos eletrônicos. Nesta pesquisa, a utilização de algoritmos evolutivos não se restringiu àqueles que empregam apenas os três operadores genéticos descritos anteriormente, isto é, seleção, recombinação e mutação. Investigou-se a inclusão de novos métodos e operadores ao fluxo básico dos algoritmos evolutivos, com o propósito de melhorar seu desempenho em problemas na área de Eletrônica Evolutiva. Particularmente, estudou-se a utilização de complexidade através de sistemas com representação variável sistemas evolutivos que utilizem como metáfora o conceito biológico de especiação. Além disso, uma nova metodologia para otimização com múltiplos objetivos, baseada em conceitos de aprendizado de Redes Neurais Artificiais, for também concebida nessa tese. Realizou-se um amplo estudo de casos, abrangendo eletrônica analógica, digital e microeletrônica. Uma grande variedade de circuitos de caráter prático foi sintetizada, tais como: filtros, amplificadores, osciladores, retificadores, receptores, comparadores, multiplexadores e portas digitais básicas. Novos paradigmas de eletrônica evolutiva foram também concebidos, com o intuito de tornar os circuitos projetados competitivos com aqueles convencionalmente utilizados; estes paradigmas referem-se à forma como os circuitos são avaliados ao longo do algoritmo evolutivo. A plataforma para realização dos experimentos consistiu de simuladores de circuitos e também de circuitos integrados reconfiguráveis. Os resultados mostram que esta nova classe de ferramentas de CAD pode chegar a circuitos mais eficientes do que os obtidos por ferramentas convencionais. Além disso, circuitos eletrônicos sintetizados por computação evolutiva são em geral bastante distintos daqueles projetados convencionalmente, o que contribui para a concepção de novas metodologias de projeto.