[pt] ABORDAGENS EXATAS E HEURÍSTICAS PARA VARIANTES DO PROBLEMA DE ROTEIRIZAÇÃO COM ESTOQUE

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: DIEGO MOAH LOBATO TAVARES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35787&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35787&idi=2
http://doi.org/10.17771/PUCRio.acad.35787
Resumo: [pt] Esta pesquisa trata de duas variantes do conhecido Problema de Roteirização de Veículos com Estoque (do inglês Inventory Routing Problem – IRP). O problema nasce num contexto de um sistema de Vendor Managed Inventory (VMI) no qual o fornecedor é responsável pela gestão de estoques do cliente. Tal problema é a junção dos problemas de transporte e gestão de estoques, que correspondem aos maiores custos em uma operação logística. Destarte este trabalho apresenta um modelo matemático para uma variante do IRP que considera que o fornecedor tem clientes dentro e fora do sistema de VMI. Este caso surge quando para alguns clientes não é interessante a realização do controle de seus estoques dentro do sistema de VMI, somente o atendimento de suas demandas. Além disto, o modelo contempla três diferentes tipos de políticas de gestão de estoques e é capaz de lidar com casos contendo vários períodos e vários veículos. Após sua elaboração, o modelo foi validado em instâncias do IRP, do Problema de Roteamento de Veículos (do inglês Capacitated Vehicle Routing Problem - CVRP) e instâncias próprias para a variante. Foram realizados também estudos sobre os impactos das diferentes políticas de gestão de estoques. Além do modelo matemático, foi desenvolvida uma meta-heurística híbrida que resolve uma variante do IRP considerando vários períodos e vários veículos. Cada movimento considerado durante a meta-heurística é divido em duas etapas, a primeira sendo a modificação da posição de um ou mais clientes nos veículos e períodos e uma segunda etapa que resolve de forma exata um Problema de Fluxo Máximo a Custo Mínimo para a atribuição ótima do volume de carga transportada para cada cliente por cada veículo em cada período. Esta abordagem é então testada em instâncias clássicas para esta variante do IRP, obtendo resultados que comprovam a eficiência do algoritmo.