[pt] IDENTIFICAÇÃO DE CARACTERES PARA RECONHECIMENTO AUTOMÁTICO DE PLACAS VEICULARES

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: EDUARDO PIMENTEL DE ALVARENGA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28690&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28690&idi=2
http://doi.org/10.17771/PUCRio.acad.28690
Resumo: [pt] Sistemas de reconhecimento automático de placas (ALPR na sigla em inglês) são geralmente utilizados em aplicações como controle de tráfego, estacionamento, monitoração de faixas exclusivas entre outras aplicações. A estrutura básica de um sistema ALPR pode ser dividida em quatro etapas principais: aquisição da imagem, localização da placa em uma foto ou frame de vídeo; segmentação dos caracteres que compõe a placa; e reconhecimento destes caracteres. Neste trabalho focamos somente na etapa de reconhecimento. Para esta tarefa, utilizamos um Perceptron multiclasse, aprimorado pela técnica de geração de atributos baseada em entropia. Mostramos que é possível atingir resultados comparáveis com o estado da arte, com uma arquitetura leve e que permite aprendizado contínuo mesmo em equipamentos com baixo poder de processamento, tais como dispositivos móveis.