[pt] IDENTIFICAÇÃO DE CARACTERES PARA RECONHECIMENTO AUTOMÁTICO DE PLACAS VEICULARES
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28690&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28690&idi=2 http://doi.org/10.17771/PUCRio.acad.28690 |
Resumo: | [pt] Sistemas de reconhecimento automático de placas (ALPR na sigla em inglês) são geralmente utilizados em aplicações como controle de tráfego, estacionamento, monitoração de faixas exclusivas entre outras aplicações. A estrutura básica de um sistema ALPR pode ser dividida em quatro etapas principais: aquisição da imagem, localização da placa em uma foto ou frame de vídeo; segmentação dos caracteres que compõe a placa; e reconhecimento destes caracteres. Neste trabalho focamos somente na etapa de reconhecimento. Para esta tarefa, utilizamos um Perceptron multiclasse, aprimorado pela técnica de geração de atributos baseada em entropia. Mostramos que é possível atingir resultados comparáveis com o estado da arte, com uma arquitetura leve e que permite aprendizado contínuo mesmo em equipamentos com baixo poder de processamento, tais como dispositivos móveis. |