[pt] APLICAÇÃO DE ALGORITMOS DE APRENDIZADO DE MÁQUINA PARA PREVER EFICIÊNCIA ENERGÉTICA BASEADO EM PARÂMETROS DE VIAGEM: ESTUDO DE CASO DE UMA FERROVIA DE TRANSPORTE DE CARGA

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: RODOLFO SPINELLI TEIXEIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56709&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56709&idi=2
http://doi.org/10.17771/PUCRio.acad.56709
Resumo: [pt] O consumo de combustível em empresas do setor de transporte ferroviário representa um dos maiores gastos operacionais e uma das maiores preocupações em termos de emissões de poluentes. O alto consumo em combustíveis acarreta também em uma alta representatividade na matriz de escopo de emissões (mais de 90 por cento das emissões de ferrovias são provenientes do consumo de combustível fóssil). Com o viés de se buscar uma constante melhora operacional, estudos vêm sendo realizados com a finalidade de se propor novas ferramentas na redução do consumo de combustível na operação de um trem de carga. Nesse ramo, destaca-se o aperfeiçoamento dos parâmetros de condução de um trem que são passíveis de calibração com o objetivo de reduzir o consumo de combustível. Para chegar a esse fim, o presente trabalho implementa dois modelos de aprendizado de máquina (machine learning) para prever a eficiência energética de um trem de carga, são eles: floresta randômica e redes neurais artificiais. A floresta randômica obteve o melhor desempenho entre os modelos, apresentando uma acurácia de 91 por cento. Visando calcular quanto cada parâmetro influencia no modelo de previsão, este trabalho também utiliza técnica de efeitos acumulados locais em cada parâmetro em relação à eficiência energética. Os resultados finais mostraram que, dentro dos quatro parâmetros de calibração analisados, o indicador de tração por tonelada transportada apresentou maior representatividade em termos de impacto absoluto na eficiência energética de um trem de carga.