[en] A TWO-STAGE STOCHASTIC PROGRAMMING MODEL FOR A TWO-ECHELON REPLENISHMENT AND CONTROL SYSTEM UNDER DEMAND UNCERTAINTY
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30884&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30884&idi=2 http://doi.org/10.17771/PUCRio.acad.30884 |
Resumo: | [pt] Apesar de existir na literatura modelos propostos para gestão de estoques, as premissas consideradas por tais modelos podem inviabilizar suas aplicações. Este trabalho propõe uma metodologia de programação estocástica para reposição e controle de estoques de produto único numa rede logística de duas camadas. O enfoque revisão periódica proposto pode considerar tanto atendimentos à demanda em atraso (backorders) como vendas perdidas (lost sales) sem restrição de pedidos pendentes. Além disso, a fim de alcançar um melhor nível de serviço para o cliente, é introduzida uma regra de rateio proporcional a quantidade faltante do item em estoque no centro de distribuição para atender simultaneamente a demanda de todos os varejistas, a qual é capaz de lidar com as alocações negativas da falta. A periodicidade e o nível alvo da posição dos estoques são determinados através de modelos de programação estocástica de dois estágios e de uma técnica baseada em simulação de Monte Carlo, conhecida como Sample Average Approximation, que levam em conta a natureza incerta dos níveis de demanda pelo item por meio da geração de conjuntos finitos de cenários. Os equivalentes determinísticos são apresentados como modelos de programação não-linear inteira mista e em seguida linearizados. Experimentos numéricos com a metodologia proposta para instâncias do problema geradas aleatoriamente demonstram seu potencial ao obter resultados com erros de aproximadamente 1 por cento. |