[pt] ARQUITETURA PROFUNDA PARA EXTRAÇÃO DE CITAÇÕES

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: LUIS FELIPE MULLER DE OLIVEIRA HENRIQUES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30734&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30734&idi=2
http://doi.org/10.17771/PUCRio.acad.30734
Resumo: [pt] A Extração e Atribuição de Citações é a tarefa de identificar citações de um texto e associá-las a seus autores. Neste trabalho, apresentamos um sistema de Extração e Atribuição de Citações para a língua portuguesa. A tarefa de Extração e Atribuição de Citações foi abordada anteriormente utilizando diversas técnicas e para uma variedade de linguagens e datasets. Os modelos tradicionais para a tarefa consistem em extrair manualmente um rico conjunto de atributos e usá-los para alimentar um classificador raso. Neste trabalho, ao contrário da abordagem tradicional, evitamos usar atributos projetados à mão, usando técnicas de aprendizagem não supervisionadas e redes neurais profundas para automaticamente aprender atributos relevantes para resolver a tarefa. Ao evitar a criação manual de atributos, nosso modelo de aprendizagem de máquina tornou-se facilmente adaptável a outros domínios e linguagens. Nosso modelo foi treinado e avaliado no corpus GloboQuotes e sua métrica de desempenho F1 é igual a 89.43 por cento.