Utilização de representações visuais para a análise sentimental em documentos de texto

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Fiori, Mateus Hiramatsu
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
CNN
NLP
Link de acesso: http://hdl.handle.net/11449/202876
Resumo: É notável o crescimento e popularização da utilização de conceitos e métodos de inteligência artificial, mais especificamente do aprendizado de máquina, para resolução de problemas cotidianos. Através da análise de dados históricos em combinação com um alto poder computacional é possível se obter resultados que superam a capacidade humana. O presente trabalho utiliza-se deste preceito para analisar e classificar documentos de texto de acordo com os sentimentos expressos nestes, sejam eles positivos ou negativos. Em outras palavras, desenvolveu-se um modelo capaz de determinar se uma crítica de determinado filme é positiva ou negativa. No trabalho, foram utilizados diversos tipos de algoritmos de aprendizagem, desde os mais simples, como a Regressão Logística, até modelos mais complexos como as Redes Neurais Convolucionais. A abordagem inicial foi transformar os dados textuais em representações numéricas coerentes, transformá-las em imagens e utilizá-las em diversos métodos de aprendizagem de máquina, fazendo uso de camadas convolucionais. Observou-se que a abordagem proposta possui uma performance melhor quando comparada aos algoritmos de aprendizagem sem as camadas convolucionais, que são ferramentas exclusivas para o tratamento de imagem. Isso mostra que o uso de técnicas de tratamento de imagem se mostra promissor quando o intuito é a analise de sentimentos.