[en] DISTANT SUPERVISION FOR RELATION EXTRACTION USING ONTOLOGY CLASS HIERARCHY-BASED FEATURES

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: PEDRO HENRIQUE RIBEIRO DE ASSIS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24296&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24296&idi=2
http://doi.org/10.17771/PUCRio.acad.24296
Resumo: [pt] Extração de relacionamentos é uma etapa chave para o problema de identificação de uma estrutura em um texto em formato de linguagem natural. Em geral, estruturas são compostas por entidades e relacionamentos entre elas. As propostas de solução com maior sucesso aplicam aprendizado de máquina supervisionado a corpus anotados à mão para a criação de classificadores de alta precisão. Embora alcancem boa robustez, corpus criados à mão não são escaláveis por serem uma alternativa de grande custo. Neste trabalho, nós aplicamos um paradigma alternativo para a criação de um número considerável de exemplos de instâncias para classificação. Tal método é chamado de supervisão à distância. Em conjunto com essa alternativa, usamos ontologias da Web semântica para propor e usar novas características para treinar classificadores. Elas são baseadas na estrutura e semântica descrita por ontologias onde recursos da Web semântica são definidos. O uso de tais características tiveram grande impacto na precisão e recall dos nossos classificadores finais. Neste trabalho, aplicamos nossa teoria em um corpus extraído da Wikipedia. Alcançamos uma alta precisão e recall para um número considerável de relacionamentos.